Quantum Computing
with Very Noisy Gates

o The C4/Cg architecture.
o Performance data from simulation.

e Resource requirements.
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Fault-Tolerant Quantum Computing

Requirement 3 for scalable QC ¢ implementation:
Sufficiently low noise affecting physical gates and memory.
DiVincenzo (2000) [4]

e Error model: The type of noise affecting a QC implementation.
e Fault-tolerant architecture: A scheme for scalable QC in the

presence of noise.

e Fundamental problems of FTQC":
1. Scalable QC with error model £?
2. Scalable QC with fault-tolerant architecture A and with £7?

e Practical problems of FTQC":
1. Can computation C be implemented
with a given error and device budget?

“ Quantum Computing. " Fault-Tolerant Quantum Computing
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On Noise Thresholds

Fault-Tolerance Threshold Theorem.

e Thresholds depend on:
Error model
Available devices.
Geometrical constraints.

0 < threshold < 1

e Threshold studies yield:
Fault-tolerant engineering strategies.

Guidelines for gate-error/geometry/resource trade-offs.

e Thresholds are asymptotic.
Thresholds are not “observable”.

e Thresholds hide resource tradeoffs.
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In Other Words...

Thresholds are too optimistic.
Error budget near threshold — impractical resources.
... try to do better by one to two orders of magnitude.

Thresholds are too pessimistic.
Most bounds/estimates are based on specific,
concatenated architectures.
Large computations/simulations/fundamental tests may be
Implementable anyway.
E.g. rare-error kickback may be deferred.
...there is no non-idealized threshold.
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Constructing Quantum Computers

Logical qubits and gates

Physical qubits and gates

Material qusystems and control

Fault-tolerant architectures:
physical qubits,gates = near-perfect logical qubits, gates.

e Common structural assumptions:
Remaining errors are not removable by physical engineering.
Physical qubits and gates are nearly independent.

Physical gates can be applied in parallel.
Any number of physical qubits can be used, subject to geometrical

constraints.
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Error Models |
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Error Models Il
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Assume temporal and spatial independence:
Total amplitude of errors simultaneously affecting
k given locations decays exponentially with k.

Further idealizing assumptions:

1. Errors are probabilistic Pauli (Je,) are orthogonal).
Justification: The randomization conjecture.

2. Errors at different locations are statistically independent.
Justification: Increase physical separations or delocalize
logical qubit encodings.
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Two Error Trade-offs

Preparation and measurement error requirements are benign.

Justification: Given good CNOTSs, use classical error-correction
and detection methods to reduce preparation and
measurement errors.

Long “measurement” times and feed-forward delays require
very good quantum memories.

Explanation: Feedforward circuits require delaying for
measurement outcomes.

Note: Feedforward loop does not require amplifying the
measurement outcome for human consumption.

(memory error rate)x(feed-forward delay) < 1.
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The C4/Cy Architecture: Features

Use the simplest error-detecting codes and concatenation.
Exploit error-correcting teleportation.

Postselected quantum computing for state preparation.
Partial decoding for state preparation.

Fault-tolerant implementation of Clifford gates + ¢ suffices.

e Evidence that depolarizing errors > 3% per CNOT* are ok.

*error ¢/CNOT = %/one-qubit gate, f—g/preparation Oor measurement,
no geometrical constraints.
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Typical Resource Requirements
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Resource overheads* for the C,/Cg-architecture and
different computation sizes (by simulation and modelling).
* Order-of-magnitude, extrapolated.
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C,4/Cy concatenation hierarchy.

Level 3 encoded |_____

qubit pairs: } “
Level 3 _ }

syndrome bits:

7\

Level 2 encoded}
qubit pairs: -

Level 2 enéoded}i“ “ “

syndrome bits:

N\

Lev_ellenpoded}\, o~ ~ - N ~ - N -
qubit pairs: I I IY I IY I I IY IJ

Level 1 _ }/
syndrome bits:

~\ = N

Physical qubits: }—OCOO OCOO 0000 0000 0000 0000 0000 0000 0000

10
TOC



Error-correcting Teleportation

Syndrome measurement from qubit-wise teleportation.

Any stab. code}»

Fresh qubits.

Syndrome — error detection, correction, tracking.

Use Pauli frame to avoid explicit correction gates.
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Post-selected State Preparation

Error in the prepared state = error in the input state.

States only need to be “good” conditional on error checks.

Residual errors + input + Bell measurement errors
must be correctable.

Can use parallel state preparation factories.
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C4 Bell-State Preparation

Logical qubits
teleportation:

Implementations:
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C4 Bell-State Preparation

Logical qubits
teleportation:

Implementations:
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C4 Bell-State Preparation

Logical qubits
teleportation:

Implementations:
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Postselected Quantum Computing

e Postselected quantum computers.
- Can execute any of the basic operations, but
- an operation may fail, possibly destructively.
- If an operation fails, this is announced.
... exponentially small success probability (not 0) is
possible.

e A postselected QC is fault-tolerant if
success — negligible probability of error.

A postselected FTQC only needs to detect errors.

e Does postselected FTQC imply FTQC?
... Nearly: Use postselected FTQC to prepare key states.
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Power of Clifford-Pauli Operations

e The CSS operations, CSS:
Preparation of |o) and |+), CNOT, measurement of X and Z.
CSS operations suffice for encoding/decoding CSS codes.

e Universal quantum computation is possible with CSS, H and
|7 /8)-preparation.

N
QC =CS8S + "¢’ +167,.
Hxys)

A fault-tolerant computation strategy:
1. Implement a fault tolerant CSS computer, i.e.

arbitrarily accurate logical CSS with feedforward.
2 w n « gm +“8”": | /8) purification using good CSS + "€’
. T e T Bravyi&Kitaev (2004) [1], Knill (2004) [2]

e FTCSS and (|x/8) error) < (|o), |+) error) = FTQC?
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In Other Words...
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1. Build a device that supports a very good CSS-based (or
similar) qguantum memory for (say) three logical qubits.

2. Ensure that neighboring devices can exchange logical qubits.

3. Implement quantum gates internally to a device at leisure.
= the devices can form a quantum computer.
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Simulation of the (C/Cy Architecture

1. Computer-assisted heuristics to arbitrarily high levels.
Error-model propagation to detect rare-error kickbacks.

2. Monte-Carlo simulation to determine C4/Cg error behavior up
to level 4.

Implementation issues:
Avoid transients:
Verify error behavior of the second operation.
Verify full error behavior:
Operate on one-half of an entangled pair.
Verify that errors do not compound:
Check on a long sequence of operations.
Architecture is not strictly concatenated:
Full simulations at high levels.
Keep track of resources used.
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Error Probabillities for Scalable QC
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Conclusion

m
o
P L T
-}
w
=

Physical CNOTSs per

1E-6 1E-5 1E-4 1E-3 1E-2
Physical CNOT error probability ~.

e Can my computation (or simulation or
fundamental test) be implemented
with a given error and device budget?
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